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The problem of the shape of the surface of a weakly deformed, axially symmetric drop which is in 

contact with solid parallel walls is considered. A solution of the problem by asymptotic methods is 

given in the cases of complete wettability and partial wettability. 

The shape of the surface of a fluid, under conditions of weightlessness and under the action of 
surface tension forces, when in contact with solid walls, is determined in the general case by 
analytic-numerical methods [l]. 

Investigations have been carried out into the qualitative nature of the shape of the free 
surface [2,3]. 

1. We consider the problem of the equilibrium shape of a fluid which is confined between 
solid parallel walls under conditions of weightlessness and is acted upon by surface-tension 
forces in the case of complete non-wettability (mercury between glass walls, for example). This 
problem is equivalent to determining the shape of a body of specified volume with minimum 
area of a surface with specified boundaries. 

Let a fluid of specified volume V, in the shape of a sphere of radius R, be compressed 
between parallel planes to a value of the thickness 2a (a < R). We shall study this problem 
assuming that the parameter (R/a-l) is small. 

Let us introduce a system of coordinates nyz with its origin at the centre of the drop and with 
the x-axis directed along the normal to the wall (Fig. 1). 

By virtue of the symmetry of the boundary conditions, the free surface of the fluid will be a 
surface of revolution. Let us write an expression for the area of this surface and the volume of 
the fluid 

S=4&y,y’)dx, V=2njG(y)dx 
0 0 

F(Y,Y’) = yu +y12 y2, G(y)=y2, y’=dyldx (1.1) 

The Euler-Lagrange equation for the variational isoperimetric problem under consideration 

iI@ d &D m-m - = 
ay & ayl 

0, @=F+&G (1.2) 

(h is a Lagrange multiplier) has the form 
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y( l+ y’2 )-3’2y*t- (I+ y1* )-I'* -2hy=() (1.3) 

A constraint, which forbids them from passing through the surface of the walls, is imposed 
on the class of permissible curves, among which the extremal is required. According to the 
theory of one-sided variations, this leads to the condition that they touch the wall [4]. By virtue 
of the symmetry of the problem, we shall subsequently only be interested in the segment of the 
extremal which lies in the first quadrant. Since the fact that the derivative goes to infinity when 
x: = a in Cartesian coordinates interferes with the solution of the variational problem, we shall 
change to polar coordinates x = pcoscp, y = psincp in Eq. (1.3). 

We obtain an equation which has a solution p = Q when h = -1 /a and a first integral 

o,= NQsincp+ pcoscp) 
Qcoscp- Psincp (1.4) 

p’=dpl& Q=(p’sin*cp-P*)“* , , P=Xp*sin*cp+c, 

cl = const 

The choice of the sign in front of the expression for P is made from the condition for an 
extremal to be produced (when c, # 0) from an arc of a circle (when c, = 0). (Equation (1.4) 
also has a solution p = a, if c, = 0 and h = -l/a.) The constant of integration c, can be 
expressed in terms of the parameter h and the quantity h =p(x/Z), that is, the radius of the 
equator of the drop (Fig. l), by using the boundary condition on the left end of the extremal 
p’(n: / 2) = 0, c, = -h(l + 3Jt). 

It can be verified that the discriminant curve 

p=([l-2hcl +(l-4hc~)“*]/(2h2)}“* /sincp=h/sinv (1.5) 

(that is, the line y = h) is a solution of Eq. (1.4) and the band lying between the lines y = h 
and y=O is after the extremal. Q,,,,,, = y(l +Y”)-“~ SO for all points from the field of the 
extremal, that is, the Legendre condition regarding a strong minimum [4] is satisfied. The 
right-hand boundary condition is that the extremal should touch the wall. This condition is 
obtained by eliminating p’ from Eq. (1.4) and the equalities p’=d(alcoscp)ld~==sincp/co~~cp. 
After the change of variables sin2 cp = w and some simplifications, it takes the form 

(1+w)*[c,(1-w)+ha2w’]4 -2a2w2(2- w)(l- w2)[c,(l- w)+Adw]2 + (1.6) 

+a4w6(1 - w)* = 0 

Fig. 1. 
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Putting c, = ~a, h= -l/a+&, where e and 4 are new constants, let us consider the problem 
of the solvability of Eq. (1.6) for w in the neighbourhood of the value E = 0. After arranging 
the terms in order in powers of w, EZq. (1.6) takes the form 

a4 -~E~[~+E(~-~~,)]w+E*(~+E(~-uZ,)+E’L(~+~~ -81,)]~*+~[8-@+E(% + 

+121,2 +2)-4e213]w3 +[g +8&l,(1-z~)+2E2(2+3f::)1W4 +2(1,” +2&U* -13(2+&+ 

f &$/2]]w5+ ..I + w8=o 
(1.7) 

1, = l-c&, I3 =l+&(i--al,) 

where the dots denotes omitted terms involving the sixth and seventh powers in w. 
It can be seen from (1.6) and (1.7) that the coefficients of the powers of w are polynomials in 

E and, moreover, that these coefficients vanish when e = 0 for powers of w which are less than 
four. Consequently, according to Weierstrass’ theorem, the repre~ntation [5] f(w, E) = Y(w, 
&)H(w, a) is possible, where~(w, E) is the polyno~al (X7), Y(w, E) and H(w, E) are algebraic 
functions of orders three and five respectively and H(0, 0) # 0. This means that f(w, a) has the 
same roots, which vanish when E = 0 as Y(o, a) Hence, a solution of Eq. (1.7), which vanishes 
when E = 0, can be sought in the form of a series 

w= E anP14t m = 1,2,3,4 (I-8) 
n=1 

In order to select the necessary value of m, let us investigate some properties of the solution 
of the problem. 

Firstly, in the case of the curvature of the extremal, a simple connection with the coordinates 

k = (p* + 2p’* -pp”)(p* + p’* )-3’2 = cl / (p* sin* rp) - k (1.9) 

can be established using Eq. (1.3) and the first integral (1.4). 
Secondly, it can be shown that, on substituting series (1.8), with m+4, into (1.7), the lowest 

power of E in series (1.8) for which the coefficient a, itO, is greater than unity. However, a 
series of the form of (1.8), which represents a real solution of Eq. (1.7) which vanishes when 
e = 0, cannot begin with a power of E which is greater than unity. 

In fact, let w = ~,a~‘~ +f~~+~a~~“+~)‘~ + . . . , 
According to (1.9), at the point where the extremal touches the wall, the curvature of the extremal is 

determined by the expression 

from which it follows that, when mn/4 - 1> 0 and E + 0, we will have that I kc I+ 00. 
The Laplace condition [l], Ap= u(k, +k,) for the pressure drop, where o is the surface tension and kl 

and &, are the curvatures of the principal normal cross-sections, is satisfied on the surface of separation 
of the fluid and gas. In the case of a small defo~ation of the drop, the pressure drop must only change 
slightly and the convexity of the surface must be preserved. However, this is impossible when 
I kI I=I kc I-+ m. Consequently, mn/4- 1 rF; 0. 

The form of series (1.8) is refined in accordance with this 

w=U*&+a2E2+ .*. (1.10) 

A comparison of the coefficients of the same powers of E in Eq. (1.7) after the latter series 
has been substituted into it leads to an equation for determining the coefficient a, 

I-4al+2a:+4af+a,4=0 (1.11) 
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This has two real roots: 4 +i: 2.24; 4 = -0.27. (Her.e, they are calculated to two places of 
decimals.) 

The root 4 is the first coefficient of series (1.10). 

Actually, by virtue of the non-negative nature of w which is being determined, the signs of a, and E 
must be the same. Let us prove that E 2 0. 

Direct calculation of the curvature using (1.9) with (9=x/2 and taking account of the fact that 
p(W2) = h > a, ~‘(~12) = 0, p”(n/2) = 2h(l+ hh) leads to the expression k = k, =-l/h - 21. On eliminating 
1 from this expression and from the right-hand side of (1.9) with (p=x/2, we obtain c, =(k,h-1)/2. 
Allowing for the fact that the pressure drop Ap increases when the drop is compressed, we obtain 

k, +1/h 2 2/R from the Laplace condition when (p=x/2 and k, = $ and k, =1/h. Consequently, 

c,ah(hlR-l)>O, ~20 and a,>O. 

The coefficients of the series, which follow after 4, are uniquely defined. For example 

a2 =(a* /2)[1-2af, -2(1-3al,)q -(5+2uf*)u:l/(3u:+ai -1) 

We will now consider the problem of integrating Eq. (1.4) by rewriting it, after the intro- 
duction of a new variable z = sin cp, in the form 

4 - p{z[p2z2 - 5*(p,z)l”* + G%PYZ)l 

Z-- &z*&z* [p2z2 -&xz)l"2 -zS(p,zN 

Qxz) = Q2z2 + Cl 

The denominator of the right-hand side of Eq. (1.12) vanishes at the point 

z=za ={[(1/2-hc,)p-[(1/4-k,)p2 -c:]“*]/[(1+1c?p*)p])1’2 

(1.12) 

(1.13) 

that is, at the fiied critical algebraic singular point of Eq. (1.12) if the latter is considered in the 
space of the complex variables z and p [6]. 

In the neighbourhood of the critical point, the solution of Eq. (1.12) can be represented in 
the form of certain power series. However, since it is a real solution of this equation which is of 
interest, it is necessary to show that the point z, belongs to the domain of definition of the 
right-hand side of Eq. (1.2) in the case of real z and p, that is, that z, b .zu, where t12 = 
[(1-2hc,-$1-4hc,))l(2h2p2)]“2 is a zero of the expression p2z2 -c2(p, z) such that zlz = 0 
when c, = 0. For sufficiently small E, we have zf2 d ~~(l- 4s)+o(e3), z,” b c2(1- 2~) + o(z3). 
Moreover, by taking account of the fact that al 4 2 c p < 4 2a for all cp, the inequality z, == 43~ 
can be established. 

Hence, z12 s z, G z,. 
Since the right-hand side of Eq. (1.12), raised to a power of minus one, is holomorphic in the 

neighbourhood of the point (z,, p), a solution can be sought in this neighbourhood in the form 
of a series in powers of (z- zJ”” [6], where the number k is equal to the lowest order of the 
derivative of z with respect to p which does not vanish at the point (z,, p). Calculations show 
that, in the case of small E we have (d2zldp2),, # 0. We must therefore take k = 2, that is, a real 
solution of (1.12) in the neighbourhood of the point (z,, p) can be sought in the form of the 
series 

p=p, + $ a,(z-zZ,f2 (1.14) 
n=l 

and z, is given by expression (1.13) when p = p, and p, and a, are found from the condition 

pc =p, +n.I a,& -O'* (1.15) 
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and from the conditions for the coefficients of like powers of (z- zJ”‘* to be equal after 
substituting (1.14) into (1.12). For example 

01, = p0 (22, / [l - z,2 - 2mp:z: + c, w* (1.16) 

or 

a, = J2zzP, + 443 (1.17) 

On combining (1.17) with the expression p, -p, = a, d(z, - z,)+o(de), obtained from (1.15) 
and taking account of the inequality z, 6 J(3)& in choosing the sign in front of the root, we 
obtain 

z, =j/2z,u-[~--@c -Pa)* /(P,z,)*l”*l (1.18) 

By eliminating z, from (1.13) and (1.18) and making simplifications to within terms of the 
order of o(E~), we obtain the following equation for determining p, 

(l-22, +2z,2)x4+4z,(1-zC)pC~3+4c:(1-z,)~2 + 

+8c* ~z,P,x-4~:~z,Pc2-~:~=~ (x=pc-Pa) 
(1.19) 

Noting that, in the case of all small powers of x up to the third inclusive, the coefficients 
vanish when E = 0, we seek a solution of Eq. (1.19) which vanishes when E = 0 in the form of 
the series 

x = 2 &14, A = 1,2,3,4 
n=l 

It can be shown by direct verification that k = 3 satisfies the conditions of the problem. Here 
Xl = QY4Pc. 

After calculating z, = e/ 2 + O(E) and p. = a(1 - $4~3’4 + a+z/ 2 -o(e)), we obtain the asymptotic 
representation of (1.14) 

p = a( 1 - (q4E314 +ff,E/2)(1+&~~)+0(~~) (1.20) 

The series (1.14) defines a curve which begins at the point A (Fig. 1) with the coordinates 
z = z, = sincp,, p = pa which, after touching the line x = a at the point C with the coordinates 
z = z, = sincp,, p = p,, forms the right-hand segment of the extremal. However, the radius of 
convergence of this series does not include the point z = 1 at which the left boundary condition 
p’(x/2)=0 is given. In order to determine the left segment of the extremal, we return to Eq. 
(1.4) and rewrite it after making the substitution coscp = [ 

dP - PKS(P, ~~+J1_1;z~P2~1-~*~-5*~p,~~1”*) 

x- (l-r2M;P,T)-r~~[p*t1-r*)-5*(p,~)11/* 

(1.21) 

Since the right-hand side of (1.21) is holomorphic for c” c 1- zi, a solution of Eq. (1.21) can 

be sought in the form of the series 

p=h+: P2,C2” 
II=1 

(1.22) 

which converges for all c E [0, E], c, = arccoscp,. (The evenness of the powers of [ follows from 
the symmetry of the problem and the boundary condition @(x/2) = 0 is automatically satisfied 
here.) 
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All of the &,, are calculated after substituting the series (1.22) into Eq. (1.21) and comparing 
the coefficients of like powers of 5. For example, pZ = -u&/4 + O(E). 

In order to determine the parameters E and 4, we make use of the condition for joining the 
left and right segments of the extremal at a certain value cp = cp, E [cp,, x/2], that is, the condition 
for the right-hand sides of expressions (1.14) and (1.22) to be equal when cp = (Pi 

g ~,(z~--z,)~‘~ =h+ 2 p2,@’ (zb =siq& f;b =cW&,) (1.23) 

and the condition for the volume of the fluid (4f3)xR3 = V,+V, +Vz to be constant, where 
V, = 27ru32,2/[3(1- .z,‘)J is the volume of a pair of cones with vertices at the point p=O and with 
bases which coincide with the areas of contact between the fluid and the walls 

v, = 2~~~d~ = 27&dz, v, 
%I2 

=2a f&d<p=21t P F,dc 
9c r, 9b 0 

F. =p3sin3cp-p’p2cosqsin2cp, 4 =p’[p-(l-z2)dpI&lz2 I&? 

where p, in the case of F;, is represented by the series (1.14) and, in the case of F;, by the series 
(1.22). 

A value of (Pi, which is close or equal to a magnitude of x/4, has to be chosen for the above- 
mentioned series to converge rapidly. Here also, confining ourselves to a rough estimate of the 
parameters E and 4, we take fpb = cpc. The left-hand side in (1.23) can then be replaced by the 
quantity a/J{&2:). 

The simplified conditions take the form 

a(l+alE/2)=a[l+&(1+d,)-&/41+0(E) (1.24) 

From (1.24), we find 

i,=(t2&$)/(2U), E=2(R3/u3-1)(4u,+l) 

2 Let us consider the case when a fluid drop is in contact with the walls with a known angle 
of contact or, more precisely, in the case of the boundary condi~ons (Fig. 2) 

y’(O)=O, y’(a)=-& g=ctge, 0<9GX/2 (2.3) 

The value of g is assumed to be small and 8 is the angle of contact. 

Fig. 2. 
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It is simpler to solve this problem in Cartesian coordinates. In these coordinates, the first 
integral has the form 

Y ‘= -[y2 /(c, + hy2)2 - I]“2 (2.2) 

On integrating it, we obtain 

x=~(y2+C1/h)[-y4+(1/P-2C*/h)y~-C:Ih21-”2dy+c2 

(O~xSa, O<y, c2=const) 

(2.3) 

Here, a real solution is only possible if the following inequality is satisfied 

Cl < 1/(4h) (2.4) 

In this case, the solution is represented by the elliptic integral 

x=J(y’+ci/h)/ (y2-A2)(h2-y2)dy+c2 (2.5) 

In the class of convex solutions y(x) s h = y(O). Hence, instead of (2.9, one can write the 
expression 

x=-[(l+aJa)lh]F(Y,k)+hE(Y,k) 
(2.6) 

Y=arcsinJ(h2-y2)(h2-A’), k2=(1-2hh)l(h2h2) @a(-1/(2/z))) 

where F(Y, k) and E(Y, k) are incomplete elliptic integrals of the first and second kind. 
In order to determine the parameters h and h we make use of conditions (2.1) which, when 

account is taken of (2.2), reduce to the expression 

and the constant-volume condition with is now more conveniently represented in the form 

v = 2n(& + jXy& (2.7) 
b 

In order to close the system of equations in the unknown h, h and b, it is necessary to make 
use of relationship (2.6) when y(a) = b, that is 

(2.8) 

In the general case, it is difficult to obtain explicit expressions for the parameters of the 
problem from the last three equations. However, in the case when the magnitude of g is small, 
this can be done. 

Let us consider this case. When g = 0, the equation of the extremal (1.3) has the solutions y = b= const, 
if 

We will seek a solution of Eq. (1.3) in the case of a sufficiently small value of g = E in the form of the 
series 
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y=b+q, +~~q~+... (2.9) 

while also representing the values of the parameters h and c, in the form of the series 

h==+ +E=12+...; Cl - -$b+q, +E=c,~+... (2.10) 

As a result of substituting series (2.9) and (2.10) into Eq. (2.2) and regrouping the terms in increasing 
powers of E under the radical in (2.2), a new power series of the form 

A,&+A2a2 +A,&j+ ...I A, =(q, +th,)/b (2.11) 

A2 =;(3ct, +2C,z)+b(3ft +212)+2 ( -&+I -+l: 1, 

is obtained, that is, Eq. (2.2) takes the form 

qf +&2f):+:..= -6 A, +EAz +E’A,+... (11: =dtjl&) (2.12) 

In order that this should have a solution, it is necessary that the equality A, =O should be satisfied. 
Obviously, A,,* 0. We will seek a solution of (2.12) for which A, > 0 when nt = 0. Equation (2.12) can 

then be written in the form of the series 

r(i +&lJi+...=- Al +eA3 +E~A~+... =-&(I+&& +&33+...) (2.13) 

which converges in a certain neighbourhood of E = 0. 
From a comparison of the coefficients of like powers of E in (2.13), we obtain a sequence of di~erentia1 

equations 

ni=-&; $ =-&Bk; k=2,3,... (2.14) 

with the boundary conditions 

$f?)=O; rlita)= -1; r&(0)=0; r$(u)=O, kzl (2.15) 

which are ensured by the choice of constants cIt and czrr where c,, are constants which appear when 

integrating (2.14). Actually, these constants, together with the constants E,, are determined from 

conditions (2.15) and the constant-volume condition 

%[2(b+nl,+...+E~-ll;_I)?r+e*r(:ldr=O, k=1,2 ,... (2.16) 

Without touching here on the question of the solvability of the boundary-value problem for all k, let us 

consider the solution when k = 1. When k = 1 and allowing for the fact that A, = 0 or cn + b21, = 0, we 

have 

2 I 2 112 
tl; = --[-cl2 + 24 + 411% -I;z% 1 

b 
(2.17) 

and, after iutegration 

n, = 2bz[t, - P--- tI +112 sin(xIb+czl)], t12 =(c,, ib2 +tz)/(2b) 

c21 = const 

The condition q’(O) = 0 can be satisfied by taking czi = -n/2. Then 
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q, =26*[1, + I, +I,, ces(xIb)l J’ 

From the other boundary condition $(a)=-1, we obtain J(~+I,,)=1/[2bsin(a/b)] and, from 

condition (2.16) or ~“,q&+o(~)=O, we obtain 1i =-(b/a)d(c +f,,)sin(a/b). 

On solving the resulting relationships for cn, 1, and 6,2, we find cl1 =6’/(h), 1, =-1(2a), 1, = 

1/[46’ sin2(a/6)]-1/(4u2) subject to the condition that 0 <a c ti. 
The parameters which have been found satisfy the previously assumed inequality A, > 0 when n, = 0, 

since sin(u/b) < u/b and, consequently lU > 0. Finally, the asymptotic representation of the extremal will 

be 

y=b+Eb*(-I/a+cos(~/b)l[bsin(a/b)])+o(~) 

k=-1/(2b)-&/(2a)+o(E), c, =-b12+&*/(2a)+o(E) (b=dm) 

In applications, the magnitude of the force due to the pressure of the drop on the wall may be of 

interest. This can be calculated by determine the area of contact and the pressure drop (on the equator of 
the drop, for example) using the Legendre condition. 

I wish to thank V. V. Rumyantsev, A. T. Fomenko and the participants at the seminar under 
the direction of V. G. Demin for discussing this paper. 
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